Roll No. Total No. of Pages : 02	Roll No. Total No. of Pages : 02
----------------------------------	----------------------------------

Total No. of Questions: 09

B.Tech.(AE) (2011 onwards) (Sem.-4) FLUID MECHANICS AND MACHINERY

Subject Code: BTAE-403 Paper ID: [A1163]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Differentiate between Newtonian and non-Newtonian fluids.
- b) State Pascal's law. Give its engineering applications.
- c) Define metacentric height.
- d) Distinguish between surface tension and capillarity.
- e) What is hydraulic and energy gradient line?
- f) What is Mach number? Give examples where it is applicable.
- g) Write the continuity equation for compressible fluid flow.
- h) What is uniform and non-uniform flow?
- i) What is meant by flow losses in pipes?
- j) What is the function of a hydraulic accumulator?

SECTION-B

- A solid cylinder of diameter 4.0 m has a height of 4.0 m. Find the metacentric height of the cylinder if the specific gravity of the material of cylinder = 0.6 and it is floating in water with its axis vertical. State whether the equilibrium is stable or unstable.
- The velocity vector in a fluid flow is given $V = 4x^3 i 10x^2y j + 2t k$. Find the magnitude of velocity and acceleration of a fluid particle at (2,1,3) at time t = 1.
- What are the basic components of a turbo machine? Give detailed classification of turbo machine.
- 5 Distinguish between centrifugal and axial pumps.
- 6 Explain the principle of Pitot-tube. Derive the expression of flow velocity using this principle.

SECTION-C

- State Buckingham's π theorem. Show that velocity through a circular orifice is given by $V = \sqrt{(2gh)} \Phi[D/H, \mu/\rho VH]$ where H is the head causing flow, D is the diameter of the orifice, μ is the co-efficient of viscosity, ρ is the mass density and g is the acceleration due to gravity. (10)
- 8 a) Write Bernoulli's equation. State the assumptions for its derivations. (4)
 - b) A closed tank of a fire engine is partly filled with water, the air space above being under pressure. A 5 cm hose connected to the tank discharges on the roof of building 2 m above the level of water in the tank. The friction losses are 50 cm of water. What air pressure must be maintained in the tank to deliver 15 litres/s on the roof? (6)
- 9 a) Discuss the briefly the minor head losses in pipe flow. Under what conditions they are significant as compared to friction losses? (5)
 - b) Describe the constructional features and principle of working of Venturimeter. (5)